

Theory I Algorithm Design and Analysis

(10 - Text search, part 1)

Prof. Dr. Th. Ottmann

Text search

Different scenarios:

Dynamic texts

- Text editors
- Symbol manipulators

Static texts

- Literature databases
- Library systems
- Gene databases
- World Wide Web

Text search

Data type **string**:

- array of character
- file of character
- list of character

Operations: (Let *T*, *P* be of type **string**)

Length: length ()

i-th character: T[i]

concatenation: cat (T, P) T.P

Problem definition

Input:

Text
$$t_1 t_2 \dots t_n \in \Sigma^n$$

Pattern $p_1 p_2 \dots p_m \in \Sigma^m$

Goal:

Find one or all occurrences of the pattern in the text, i.e. shifts i $(0 \le i \le n - m)$ such that

$$p_{1} = t_{i+1}$$

$$p_{2} = t_{i+2}$$

$$\vdots$$

$$p_{m} = t_{i+m}$$

Problem definition

$$i \quad i+1 \qquad i+m$$
Text: $t_1 \quad t_2 \quad \dots \quad t_{i+1} \quad \dots \quad t_{i+m} \quad \dots \quad t_n$

Pattern:
$$\longrightarrow p_1$$
 p_m

Estimation of cost (time):

- 1. # possible shifts: n m + 1 # pattern positions: $m \rightarrow O(n-m)$
- 2. At least 1 comparison per *m* consecutive text positions:
 - $\rightarrow \Omega(m + n/m)$

Naïve approach

For each possible shift $0 \le i \le n - m$ check at most m pairs of characters. Whenever a mismatch, occurs start the next shift.

```
textsearchbf := proc (T : : string, P : : string)
# Input: Text T und Muster P
# Output: List L of shifts i, at which P occurs in T
   n := length (T); m := length (P);
   L := [];
   for i from 0 to n-m {
         i := 1;
         while j \le m and T[i+j] = P[j]
                   do j := j+1 od;
         if j = m+1 then L := [L[], i] fi;
   RETURN (L)
end;
```

Naïve approach

Cost estimation (time):

Worst Case: $\Omega(m \cdot n)$

In practice: mismatch often occurs very early

 \rightarrow running time ~ $c \cdot n$

Let t_i and p_{i+1} be the characters to be compared:

If, at a shift, the first mismatch occurs at t_i and p_{i+1} , then:

- The last j characters inspected in T equal the first j characters in P.
- $t_i \neq p_{j+1}$

Idea:

Determine j' = next[j] < j such that t_i can then be compared with $p_{j'+1}$.

Determine j' < j such that $P_{1...j'} = P_{j-j'+1...j}$.

Find the longest prefix of P that is a proper suffix of $P_{1...j}$.

Example for determining *next[j*]:

$$t_1$$
 t_2 ... 01011 01011 0 ... 01011 1 01011 1

 $next[j] = length of the longest prefix of P that is a proper suffix of <math>P_{1...j}$.

 \Rightarrow for P = 0101101011, next = [0,0,1,2,0,1,2,3,4,5]:

1	2	3	4	5	6	7	8	9	10	
0	1	0	1	1	0	1	0	1	1	
		0								
		0	1							
					0					
					0	1				
					0	1	0			
					0	1	0	1		
							_			


```
KMP := proc (T : : string, P : : string)
# Input: text T and pattern P
# Output: list L of shifts i at which P occurs in T
   n := length (T); m := length(P);
   L := []; next := KMPnext(P);
   i := 0:
   for i from 1 to n do
         while j>0 and T[i] <> P[j+1] do j := next[j] od;
         if T[i] = P[j+1] then j := j+1 fi;
         if j = m then L := [L[], i-m];
                      j := next [j]
        fi:
    od;
    RETURN (L);
end;
```


Pattern: abracadabra, next = [0,0,0,1,0,1,0,1,2,3,4]

$$next[11] = 4$$

abracadabrabrababrac... - - - + abrac abrac next[4] = 1


```
abracadabrabrababrac...
              - | | | /
              abrac
              next[4] = 1
abracadabrabrababrac...
                  - | /
                  abrac
                  next[2] = 0
abracadabrabrababrac...
                    abrac
```


Correctness:

Situation at start of the for-loop:

$$P_{1...j} = T_{i-j...i-1}$$
 and $j \neq m$

if j = 0: we are at the first character of P

if $j \neq 0$: P can be shifted while j > 0 and $t_i \neq p_{j+1}$

If T[i] = P[j+1], j and i can be increased (at the end of the loop).

When P has been compared completely (j = m), a position was found, and we can shift.

Time complexity:

- Text pointer *i* is never reset
- Text pointer i and pattern pointer j are always incremented together
- Always: next[j] < j;
 j can be decreased only as many times as it has been increased.

The KMP algorithm can be carried out in time O(n), if the *next*-array is known.

Computing the *next*-array

next[i] = length of the longest prefix of P that is a proper suffix of $P_{1...i}$.

$$next[1] = 0$$

Let $next[i-1] = j$:

$$p_1 \ p_2 \ \dots \ p_j \ p_j \ \dots$$

$$= = = = \neq p_1 \ p_1 \ p_j \ p_{j+1} \ p_m$$

Computing the *next*-array

Consider two cases:

1)
$$p_i = p_{j+1} \to next[i] = j + 1$$

2) $p_i \neq p_{j+1} \rightarrow$ replace j by next[j], until $p_i = p_{j+1}$ or j = 0. If $p_i = p_{j+1}$, we can set next[i] = j + 1, otherwise next[i] = 0.


```
KMPnext := proc (P : : string)
#Input : pattern P
#Output: next-Array for P
   m := length (P);
   next := array (1..m);
   next[1] := 0;
   i := 0;
   for i from 2 to m do
      while j > 0 and P[i] <> P[j+1]
         do j := next [j] od;
      if P[i] = P[j+1] then j := j+1 fi;
      next [i] := j
   od;
   RETURN (next);
end;
```

Running time of KMP

The KMP algorithm can be carried out in time O(n + m).

Can text search be even faster?

Method of Boyer-Moore (BM)

Idea: Align the pattern from left to right, but compare the characters from right to left.

Example:

```
er sagte abrakadabra aber 
aber

er sagte abrakadabra aber 

aber
```

Method of Boyer-Moore (BM)


```
er sagte abrakadabra aber
     aber
er sagte abrakadabra aber
         aber
er sagte abrakadabra aber
            aber
```

Method of Boyer-Moore (BM)


```
sagte abrakadabra aber
e r
                 aber
er sagte abrakadabra aber
                     aber
   sagte abrakadabra aber
                       aber
```

Large jumps: few comparisons

Desired running time: O(m + n/m)

For $c \in \Sigma$ and pattern P let

 δ (c) := index of the first occurrence of c in P from the right

$$= \max \{j \mid p_j = c\}$$

$$= \begin{cases} 0 & \text{if } c \notin P \\ j & \text{if } c = p_j \text{ and } c \neq p_k \text{ for } j < k \leq m \end{cases}$$

What is the cost for computing all δ -values?

Let
$$|\Sigma| = l$$
:

Let

c = the character causing the mismatch j = index of the current character in the pattern ($c \neq p_i$)

Computation of the pattern shift

Case 1 c does not occur in the pattern P. ($\delta(c) = 0$) Shift the pattern to the right by j characters

$$\Delta(i) = j$$

Case 2 *c* occurs in the pattern. $(\delta(c) \neq 0)$

Shift the pattern to the right, until the rightmost *c* in the pattern is aligned with a potential *c* in the text.

Case 2a: $\delta(c) > j$

Shift of the rightmost c in the pattern to a potential c in the text.

$$\Rightarrow$$
Shift by $\Delta(i) = m - \delta(c) + 1$

Case 2b: $\delta(c) < j$

Shift of the rightmost *c* in the pattern to *c* in the text:

$$\Rightarrow$$
 shift by $\Delta(i) = j - \delta(c)$

BM algorithm (1st version)


```
Algorithm BM-search1
Input: Text T and pattern P
Output: Shifts for all occurrences of P in T
1 n := length(T); m := length(P)
2 compute \delta
3 i := 0
4 while i < n - m do
```

while j > 0 and P[j] = T[i + j] do

WS03/04

5

6

j := m

8 end while;

j := j - 1

BM algorithm (1st version)


```
9 if j = 0

10 then output shift i

11 i := i + 1

12 else if \delta(T[i + j]) > j

13 then i := i + m + 1 - \delta[T[i + j]]

14 else i := i + j - \delta[T[i + j]]

15 end while;
```

BM algorithm (1st version)

Analysis:

desired running time : c(m + n/m)

worst-case running time: $\Omega(n \cdot m)$

Match heuristic

Use the information collected before a mismatch $p_j \neq t_{i+j}$ occurs

wrw[j] = position of the end of the closest occurrence of the suffix $P_{j+1 \dots m}$ from the right that is not preceded by character P_j .

Possible shift: $\gamma[j] = m - wrw[j]$ (wrw[j] >0)

wrw[j] = position of the end of the closest occurrence of the suffix $P_{j+1 \dots m}$ from the right that is not preceded by character P_j ..

Pattern: banana

wrw[j]	inspected suffix	forbidden character	further occurrence	posit- ion
wrw[5]	а	n	b <u>a</u> n <u>a</u> na	2
wrw[4]	na	а	* <u>**</u> ba <u>na</u> <u>na</u>	0
wrw[3]	ana	n	ban <u>ana</u>	4
wrw[2]	nana	а	ba <u>nana</u>	0
wrw[1]	anana	b	b <u>anana</u>	0
wrw[0]	banana	ε	<u>banana</u>	0

Example for computing wrw

$$\Rightarrow$$
 wrw (banana) = [0,0,0,4,0,2]
a b a a b a b a n a n a n a n a \neq = = =

banana banana

Match heuristic

Use the information collected before a mismatch $p_j \neq t_{i+j}$ occurs

wrw[j] = position of the end of the closest occurrence of the suffix $P_{j+1 \dots m}$ from the right that is not preceded by character P_j .

Possible shift:
$$\gamma[j] = m - wrw[j]$$
 (wrw[j] >0) $\gamma[j] = ??$ (wrw[j] =0)

BM algorithm (2nd version)


```
Algorithm BM-search2
```

Input: Text *T* and pattern *P*

Output: shift for all occurrences of *P* in *T*

- 1 n := length(T); m := length(P)
- 2 compute δ and γ
- 3 i := 0
- 4 while $i \le n m$ do
- 5 j := m
- 6 while j > 0 and P[j] = T[i + j] do
- 7 j := j 1
- 8 end while;


```
9 if j = 0

10 then output shift i

11 i := i + \gamma[0]

12 else i := i + \max(\gamma[j], j - \delta[T[i + j]])

13 end while;
```